

A benchmark dataset for explainable hate speech detection

Binny Mathew*, **<u>Punyajoy Saha*</u>**, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, Animesh Mukherjee

"

This presentation contains material that many will find **offensive** or **hateful**; however this cannot be avoided owing to the nature of the work.

gab

Robert Bowers @onedingo 2 hours ago

HIAS likes to bring invaders in that kill our people. I can't sit by and watch my people get slaughtered. Screw your optics, I'm going in.

∧ Comments C

C Repost

gab

Robert Bowers @onedingo 2 hours ago

HIAS likes to bring invaders in that kill our people. I can't sit by and watch my people get slaughtered. Screw your optics, I'm going in.

∧ ■ Comments ● Repost ff Quote

Facebook continues to make progress on proactively identifying hate speech

Research in hate speech

Dataset	Labels	Total size	Language	Target Labels ?	Rationales?
Waseem & Hovy '16	Racist, Sexist, Normal	16,914	English	X	X
Davidson et al. '17	Hate speech, Offensive, Normal	24,802	English	X	X
Founta et al. '18	Hate speech, Abusive, Normal, Spam	80,000	English, French Arabic	X	X
Ousidhoum et al. '19	five different aspects	13,000	English	\checkmark	X

Research in hate speech

Data collection

Details of data collection from Twitter and Gab

Collection strategy

- Collected data from gab and twitter using a lexicons
- Lexicon was created from three previous works.
- **Gab** dataset created by previous work^[1]
- **Twitter -** 1% random sample from January '19 to June '20.

[1] Binny Mathew, Ritam Dutt, Pawan Goyal, and Animesh Mukherjee. 2019. Spread of Hate Speech in Online Social Media. WebSci'19

gat

Few finer details

- Did not consider **reposts** and remove **duplicates**.
- Posts do not contain **links**, **pictures** or **videos.**
- The **emojis** are in the text.
- The usernames are replaced with <user>

gab

....

Annotations

The annotation framework.

Annotation framework

Each post in our dataset contains

- Label
- Target
- Rationales

Final label is selected using **majority**

919 cases did not have clear majority.

guess the ni**er have been to
busy to kill off this mudsh**k.Hatespeechy is big baby davis a fa**ot on
shameless doe.OffensivePeople act as if you can not say
the same about the states
obviously not all americans are
pro guns not.Normal

Label

Annotation framework

Each post in our dataset contains

- Label
- Target
- Rationales

A target is selected if it is marked so by **majority** of the annotators

Offensive - Women, African and LGBTQ **Hate speech -** African, Islam and Jewish

Group	Categories	
Race	African, Arabs, Asians, Caucasian, Hispanic	
Religion	Buddhism, Christian, Hindu, Islam, Jewish	
Gender	Men, Woman	
Sexual Orientation	Heterosexual, LGBTQ	
Miscellaneous	Refugee, Indigenous	
*mo	re than 100 posts	

Annotation framework

Each post in our dataset contains

- Label
- Target
- Rationales

Text: I guess the ni^{**}er have been to busy to kill off this mudsh^{**}k.

Average number of tokens is ~5 in rationales **out of ~23** in a post. **Top content words Offensive -** retarded, bitch and white. **Hate speech -** ni**er, k*ke and m**lems.

Data format

The data is a dictionary having elements in the following format:

<post_id>: {
 post_id: <post_id>,
 annotators: <list of annotations>,
 rationales: <2-3 boolean vector
length equal to post_tokens>,
 Post_tokens: < list of tokens >

The <list of annotations> contains annotation from 3 annotators

- Annotator ID
- Label
- List of targets

Ground truth rationales

Models

Deep learning models used in this work

General framework

Models without attention supervision

- CNN-GRU
- Birnn
- BiRNN-Attention
- BERT

Models with attention supervision

- BiRNN-HateXplain
- BERT-HateXplain

Attention supervision

• BiRNN-HateXplain

Cross entropy of attention weights and ground truth rationales.

• BERT-HateXplain

12 layers, each having 12 heads.

We can control which layer and how many heads to supervise

Extracting rationales from models

Attention based (Attn): Here we use the attention weights as final rationales.

- **BiRNN -** attention weights corresponding to the single head
- **BERT -** attention weights from 12 heads averaged.

Lime based (LIME): Here we pass the model outputs through LIME and then consider the top *K* words.

Evaluation

Evaluation metrics employed in this work

Metrics used for evaluation

• Performance

Accuracy, F1-score and AUROC of final classification label

• Bias

Subgroup AUC, BPSN , BNSP to understand target level bias

• Explainability

Plausibility (IOU F1-score & token F1 score) and **Faithfulness** (comprehensiveness & sufficiency) to understand explainability aspect

Classify between **toxic** (hate speech, offensive) and **non-toxic** (normal)

Measure the unintended bias of the models using

- Subgroup AUC
- BPSN
- BNSP

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. 2019. Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification

Classify between **toxic** (hate speech, offensive) and **non-toxic** (normal).

Measure the unintended bias of the models using

- Subgroup AUC
- BPSN
- BNSP

Sub group AUC

- 1. Collect all the posts in **test** data belonging to a community
- 2. Measure the **AUC-ROC** score
- 3. **Higher score** means the model is able to distinguish toxic vs non toxic posts.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. 2019. Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification

Classify between **toxic** (hate speech, offensive) and **non-toxic** (normal).

Measure the unintended bias of the models using

- Subgroup AUC
- BPSN
- BNSP

Background positive, sub group negative

- 1. Collect **normal posts** that **mention** target community and **toxic posts** that **do not mention** target community
- 2. Measure the **AUC-ROC** score
- 3. **Higher score** means the model is less likely to confuse.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. 2019. Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification

Classify between **toxic** (hate speech, offensive) and **non-toxic** (normal).

Measure the unintended bias of the models using

- Subgroup AUC
- BPSN
- BNSP

Background negative, sub group positive

- Collect toxic posts that mention target community and normal posts that do not mention target community
- 2. Measure the **AUC-ROC** score
- 3. **Higher score** means the model is less likely to confuse.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. 2019. Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification

Generalized Mean of Bias(GMB) AUC: This metric was used in the "Jigsaw Unintended Bias in Toxicity Classification"

$$M_p(m_s) = \left(rac{1}{N}\sum_{s=1}^N m_s^p
ight)^{rac{1}{p}}$$

 M_p = the *p*th power-mean function

 m_s = the bias metric m calulated for subgroup s

N = number of identity subgroups

p is -5 and number of sub groups are 10.

https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview/evaluation

Explainability metrics

Plausibility: Is the explanation correct or something we can believe is true, given our current knowledge of the problem?

Faithfulness: how to provide explanations that accurately represent the true reasoning behind the model's final decision

Explainability metrics

Plausibility is measured using ground truth and predicted rationales

- IOU F1 score (Hard)
- Token F1 score (Hard)
- AUPRC score (Soft)

DeYoung, Jay, et al. "Eraser: A benchmark to evaluate rationalized nlp models." arXiv preprint arXiv:1911.03429 (2019).

Explainability metrics

Faithfulness is measured using the predicted rationales

- Comprehensiveness
- Sufficiency

DeYoung, Jay, et al. "Eraser: A benchmark to evaluate rationalized nlp models." arXiv preprint arXiv:1911.03429 (2019).

Results

Results and observations

5

Performance results

Models	Accuracy	F1 Score	AUROC
CNN-GRU	0.627	0.606	0.793
BiRNN	0.595	0.575	0.767
BiRNN-Attn	0.621	0.614	0.795
BiRNN-HateXplain	0.629	0.629	0.805
BERT	0.690	0.674	0.843
BERT-HateXplain	0.698	0.687	0.851

Bias results

Models	GMB-Sub	GMB-BPSN	GMB-BNSP
CNN-GRU	0.654	0.623	0.659
BiRNN	0.640	0.604	0.671
BiRNN-Attn	0.653	0.662	0.668
BiRNN-HateXplain	0.691	0.636	0.674
BERT	0.762	0.709	0.757
BERT-HateXplain	0.807	0.745	0.763

Explainability results

Models	Plausibility			Faithfulness	
	IOU F1	Token F1	AUPRC	Comp.	Suff.
CNN-GRU [LIME]	0.167	0.385	0.648	0.316	-0.082
BIRNN [LIME]	0.162	0.361	0.605	0.421	-0.051
BiRNN-Attn [Attn]	0.167	0.369	0.643	0.278	0.001
BiRNN-Attn [LIME]	0.162	0.386	0.650	0.308	-0.075
BiRNN-HateXplain [Attn]	0.222	0.506	0.841	0.281	0.039
BiRNN-HateXplain [LIME]	0.174	0.407	0.685	0.343	-0.075
BERT [Attn]	0.130	0.497	0.778	0.447	0.057
BERT [LIME]	0.118	0.468	0.747	0.436	0.008
BERT-HateXplain[Attn]	0.120	0.411	0.626	0.424	0.160
BERT-HateXplain[LIME]	0.112	0.452	0.722	0.500	0.004

.

10 A. A.

Model	Text	Label
Human Annotator	The <mark>jews</mark> are again using <mark>holohoax</mark> as an excuse to <mark>spread</mark> <mark>their agenda</mark> . <mark>Hilter</mark> should have <mark>eradicated</mark> them	Hatespeech
BiRNN-At tn	The <mark>jews</mark> are again <mark>using</mark> holohoax <mark>as an excuse</mark> to spread <mark>their</mark> agenda . <mark>Hilter</mark> should have eradicated them	Hatespeech
BiRNN-H ateXplain	The jews are <mark>again using</mark> holohoax <mark>as</mark> an excuse to spread <mark>their</mark> agenda . <mark>Hilter should</mark> have <mark>eradicated</mark> them	Hatespeech
BERT	<mark>The jews</mark> are again using <mark>holohoax</mark> as an excuse to <mark>spread</mark> their <mark>agenda</mark> .Hilter should <mark>have</mark> eradicated them	Offensive
BERT-Hat eXplain	The jews are again using <mark>holohoax</mark> as an <mark>excuse</mark> to spread their agenda .Hilter should have eradicated them	Offensive
Hum	an Only model found Both mo important found im	odel and human Iportant

10 A. A.

.

.

Conclusion

- We curate a dataset of 20k posts from Twitter and Gab having label, target and rationale
- Models show good performance, do not fare well in terms of model interpretability.
- Models which use rationales while training **perform better** and has **less unintended bias**

Data & Code repository : https://github.com/punyajoy/HateXplain

Thanks!

Binny Mathew

Punyajoy Saha*

Seid Muhie Yimam

Chris Biemann

Any questions?

Pawan Goyal

Animesh Mukherjee

You can find me at @punyajoysaha & punyajoys@iitkgp.ac.in