

Hate speech: Detection, Mitigation and beyond Tutorial at AAAI 2022

This presentation contains material that many will find **offensive** or **hateful**; however this cannot be avoided owing to the nature of the talk.

Animesh Mukherjee

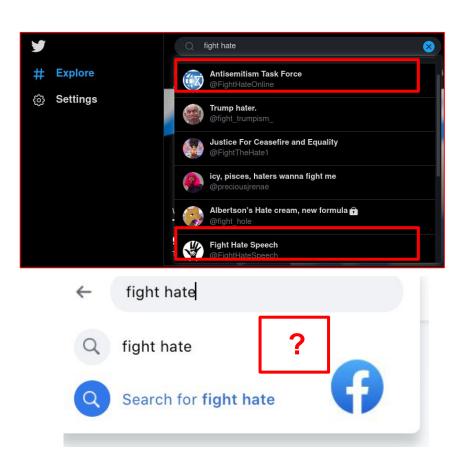
Binny Mathew **y** <u>@_BinnyM</u>

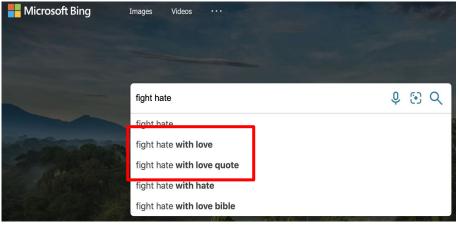
Organisers

Punyajoy Saha Y <u>apunyajoysaha</u>

Find more about us here! https://hate-alert.github.io/ ³

Hate speech: A growing concern?





Q	fight hate				×				
Q	fight hate with	love quotes							
Q	fight hate with	love							
Q	fight hate with	hate	•						
Q	fight hate with	love bible ver	se						
Q	fight hate speech with more speech								
		Google Search	n l'm	Feeling Lucky					
				Rep	oort inappropriate predictions				

• What is the problem? Is it really important? How deep are the repercussions?

UNITED NATIONS STRAT

To

Foreword

Around the world, we are seein intolerance – including rising anti-s Social media and other forms of c Neo-Nazi and white supremacy r weaponized for political gain with inc minorities, migrants, refugees, women a

Tackling hate speech is also crucial to by helping to prevent armed conflict, women and other serious violations of just societies. Monitoring and analyzing hate speech pattling this demon, and so I have

Addressing root causes, drivers and actors of hate speech

Using technology

Using education as a tool for addressing and countering hate speech Ma

pattling this demon, and so I have b. This Strategy and Plan of Action hited Nations can play its part in reedom of opinion and expression, sector and other partners.

United Nations Secretary-General António Guterres

May 2019

- Tutorial Part I:
 - UN Key Commitment: Monitoring and analysing hate speech
- How does hate speech **spread** in the online world?
- Can one comment on the **speed** and the **depth** using computational approaches?
- What are the long lasting effects?

- Tutorial Part II:
 - UN Key Commitment: Addressing the root causes/drivers/technology
- What could be the first step to handle this issue? Can we detect hate speech using computer algorithms?
- Can the detection results obtained from the model be explained?
- Are there **biases** in evaluation? Of what sort?

- Tutorial Part III:
 - UN Key Commitment: Countering hate speech
- How does one contain online hate?
- Conflicts with freedom of speech?
- Can one use more speech to counter hate speech (aka counterspeech)?
- Is counterspeech generic or specific to target communities?
- Can one use technology to **automatically generate** counterspeech?

- Bonus:
 - SWOT analysis
 - <u>Resources</u>: A topically organised notion page consisting of publications, links to codes and dataset.
 - <u>Some hands-on</u>.

Negative consequences

Bulandshahr Violence

Pittsburg Shooting

Christchurch Shooting

Rohingya Genocide

Sri Lanka Riots

Delhi Riots

Related tutorials

• <u>The battle against online harmful information: The cases of fake</u> <u>news and hate speech CIKM '20</u>

<u>Characterization, Detection, and Mitigation of Cyberbullying, ICWSM '18</u>

Table of contents

- Definitions and related concepts
- Analysis of hate speech
 - Prevalence
 - Effect
- Detection of hate speech
 - Datasets
 - Traditional methods
 - Sequential models
 - Transformer based models
 - Pitfalls of evaluation, explainability, bias
- Mitigation of hate speech
 - Effects of Ban
 - Counterspeech detection
 - Counterspeech generation
 - Effect of counter speech
- SWOT analysis

Working definition of hate speech

Direct and serious attacks on any protected category of people based on their race, ethnicity, national origin, religion, sex, gender, sexual orientation, disability or disease

Directed hate: hate language towards a **specific individual** or **entity**. Example "@usr4 your a f*cking queer f*gg*t b*tch".

Generalized hate: hate language towards a **general group of individuals who share a common protected characteristic**, e.g., ethnicity or sexual orientation. Example: "— was born a racist and — will die a racist! — will not rest until every worthless n*gger is rounded up and hung, n*ggers are the scum of the earth!! wPww WHITE America".

Harmful content online -- a taxonomy

What we	will be	covering	in	this	tutorial
		covering		uno	tutonal.

Fortuna et al. 2018

Concept	Definition of the concept	Distinction from hate speech
Hate	Expression of hostility without any stated explanation for it [68].	Hate speech is hate focused on stereotypes, and not so general.
Cyberbullying	Aggressive and intentional act carried out by a group or individual, using electronic forms of contact, repeatedly and over time, against a victim who can not easily defend him or herself [10].	Hate speech is more general and not necessarily focused on a specific person.
Discrimination	Process through which a difference is identified and then used as the basis of unfair treatment [69].	Hate speech is a form of discrimination through verbal means.
Flaming	Flaming are hostile, profane and intimidating comments that can disrupt participation in a community [35]	Hate speech can occur in any context, whereas flaming is aimed toward a participant in the specific context of a discussion.
Abusive language	The term abusive language was used to refer to hurtful language and includes hate speech, derogatory language and also profanity [58].	Hate speech is a type of abusive language.
Profanity	Offensive or obscene word or phrase [23].	Hate speech can use profanity, but not necessarily.
Toxic language or comment	Toxic comments are rude, disrespectful or unreasonable messages that are likely to make a person to leave a discussion [43].	Not all toxic comments contain hate speech. Also some hate speech can make people discuss more.
Extremism	Ideology associated with extremists or hate groups, promoting violence, often aiming to segment populations and reclaiming status, where outgroups are presented both as perpetrators or inferior populations. [55].	Extremist discourses use frequently hate speech. However, these discourse focus other topics as well [55], such as new members recruitment, governmer and social media demonization of the in-group and persuasion [62].
Radicalization	Online radicalization is similar to the extremism concept and has been studied on multiple topics and domains, such as terrorism, anti-black communities, or nationalism [2].	Radical discourses, like extremism, car use hate speech. However in radical discourses topics like war, religion and negative emotions [2] are common while hate speech can be more subtle and grounded in stereotypes.

Hate speech in different contexts

- Targets of hate speech depends on platform, demography and language & culture (Mondal, 2017 and Ousidhoum, 2020)
- Focused research on characterising such diverse types.
 - Racism against blacks in Twitter (Kwok, 2013)
 - **Misogyny** across manosphere in Reddit (Farell, 2019)
 - Sinophobic behaviour w.r.t COVID-19 (Schild, 2021)
- Often becomes part of different communities
 - Genetic Testing Conversations (Mittos, 2020)
 - **QAnon** Conversations (Papasavva, 2021)

Analysis and Spread

- Definitions and related concepts
- Analysis of hate speech
 - Prevalence
- Detection of hate speech
 - Datasets
 - Traditional methods
 - Sequential models
 - Transformer based models
 - Challenges
- Mitigation of hate speech
 - Effects of Ban
 - Counterspeech detection
 - Counterspeech generation
 - Effect of counter speech
- SWOT analysis

• Moderation free platforms like Gab, 4chan and Bitchute preferred.



• Gab

• In Gab, early signals show **Alt-right**, **BanIslam** as popular hashtags (Zannettou, 2018)

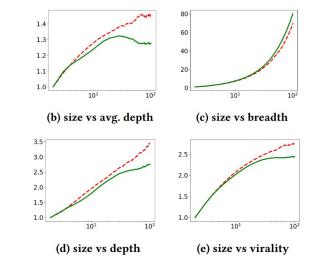
Dataset: collected 22M posts from 336k users, between August 2016 and January 2018 **Method**: Frequency count

Hashtag	(%)	Mention	(%)	
MAGA	6.06%	a	0.69%	
GabFam	4.22%	TexasYankee4	0.31%	
Trump	3.01%	Stargirlx	0.26%	
SpeakFreely	2.28%	YouTube	0.24%	
News	2.00%	support	0.23%	
Gab	0.88%	Amy	0.22%	
DrainTheSwamp	0.71%	RaviCrux	0.20%	
AltRight	0.61%	u	0.19%	
Pizzagate	0.57%	BlueGood	0.18%	
Politics	0.53%	HorrorQueen	0.17%	
PresidentTrump	0.47%	Sockalexis	0.17%	
FakeNews	0.41%	Don	0.17%	
BritFam	0.37%	BrittPettibone	0.16%	
2A	0.35%	TukkRivers	0.15%	
maga	0.32%	CurryPanda	0.15%	
NewGabber	0.28%	Gee	0.15%	
CanFam	0.27%	e	0.14%	
BanIslam	0.25%	careyetta	0.14%	
MSM	0.22%	PrisonPlanet	0.14%	
1A	0.21%	JoshC	0.12%	

• Gab

- In Gab, early signals show **Alt-right**, **Banlslam** as popular hashtags. (Zannettou, 2018)
- The posts of hateful users diffuse significantly **farther**, **wider**, **deeper** and **faster** than the non hateful users. (Mathew, 2019)

Dataset: collect 21M posts from 340k users, between August 2016 and January 2018 **Method**: Hate user extraction + diffusion method on repost network

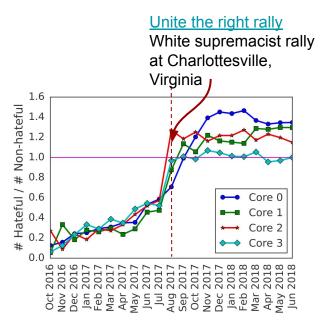


X-axis vs Y-axis

• Gab

- In Gab, early signals show **Alt-right**, **Banlslam** as popular hashtags. (Zannettou.2018)
- The posts of hateful users diffuse significantly **farther**, **wider**, **deeper** and **faster** than the non hateful users.(<u>Mathew</u>, 2019)
- Further, **fraction of hateful users** in inner core increased through time in Gab (<u>Mathew, 2020</u>)

Dataset: collect 21M posts from 340k users, between August 2016 and January 2018 **Method**: Hate user extraction + Temporal k-core analysis

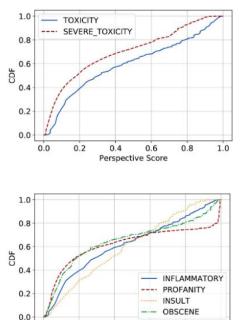


- Gab
- In Gab, early signals show **Alt-right**, **BanIslam** as popular hashtags. (Zannettou, 2018)
- The posts of hateful users diffuse significantly **farther**, **wider**, **deeper** and **faster** than the non hateful users.(<u>Mathew</u>, 2019)
- Further, **fraction of hateful users** in inner core increased through time in Gab (<u>Mathew, 2020</u>)

4chan

- In 4chan's /pol/ thread (Papasavva, 2020)
 - $37\% \rightarrow TOXICITY$ 0
 - $27\% \rightarrow SEVERE TOXIC$ \mathbf{O}
 - $36\% \rightarrow \text{INFLAMMATORY}$ \bigcirc
 - $33\% \rightarrow \mathsf{PROFANITY}$ \bigcirc
 - $35\% \rightarrow \text{INSULT}$ 0
 - $30\% \rightarrow OBSCENE$ 0

Dataset: Crawling from 4chan's /pol/ thread, June 29, 2016 to November 1, 2019. Method: Perspective api then CDF



0.6

0.8

1.0

0.0

0.2

0.4 Perspective Score

2006-03 007-03 008-03 009-03 010 03 011-03 02 03 03 03 04 03 015 03 06 03 07 03

23

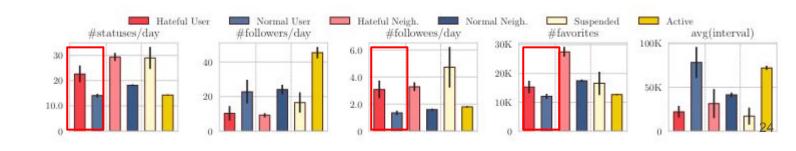
Study on characterising hateful users in Twitter (<u>Riberio,2018</u>)

• Spread of hatespeech difficult to study due to moderation of hateful user/content

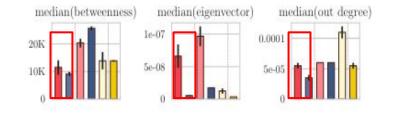
Dataset: Data collected from Twitter, keyword based extraction **Method**: Degroot method. Frequency based analysis

Study on characterising hateful users in Twitter (<u>Riberio,2018</u>)

- Spread of hatespeech difficult to study due to moderation of **hateful user/content**
- Hateful users are **power users** (post more, favourite more).



- Study on characterising hateful users in Twitter (<u>Riberio,2018</u>)
- Spread of hatespeech difficult to study due to moderation of **hateful user/content**
- Hateful users are **power users** (post more, favourite more).
- Median hate user is **more central** to the network

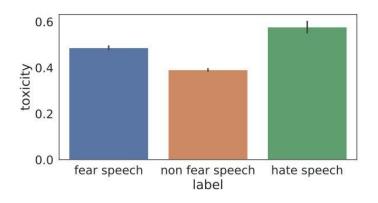


- Study on misogyny in reddit (Farrell,2019)
- *r/Braincels* was the main subreddit after *r/incel* was banned in 2015

Dataset: Pushshift reddit, lexicons, incel subreddits **Method**: Degroot method. Frequency based analysis

Not Hateful?? Not Normal?? What's Then ?

 Fear speech used elements from history, and contains misinformation to vilify Muslims. At the end, they ask the readers, to take action by sharing the post(Saha.2021).



Text (translated from Hindi)

Label

Leave chatting and read this post or else all your life will be left FS in chatting. In 1378, a part was separated from India, became an Islamic nation - named Iran ... and now Uttar Pradesh, Assam and Kerala are on the verge of becoming an Islamic state ...People who do *love jihad* — is a Muslim. Those who think of ruining the country — Every single one of them is a Muslim !!!! Everyone who does not share this message forward should be a Muslim. If you want to give muslims a good answer, please share!! We will finally know how many Hindus are united today !!

That's why I hate Islam! See how these mullahs are celebrating. HS Seditious traitors!!

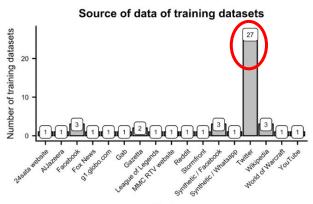
A child's message to the countrymen is that Modi ji has fooled NFS the country in 2014, distracted the country from the issues of inflationary job development to Hindu-Muslim and patriotic issues.

Detecting Hate Speech

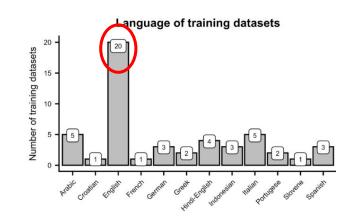
- Definitions and related concepts
- Analysis of hate speech
 - Prevalence
 - Effect
- Detection of hate speech
 - Datasets
 - Traditional methods
 - Sequential models
 - Transformer based models
 - Challenges
- Mitigation of hate speech
 - Effects of Ban
 - Counterspeech detection
 - Counterspeech generation
 - Effect of counter speech
- SWOT Analysis

- Different datasets have different taxonomies.
 - Binary classification (hate/not, targeting group or not) (Zampieri,2019)
 - Specific binary (Misogyny/not, Racism/not) (<u>Pamungkas,</u> <u>2020</u>)
 - Multiclass/labels datasets. (Davidson,2017, Basile,2019)

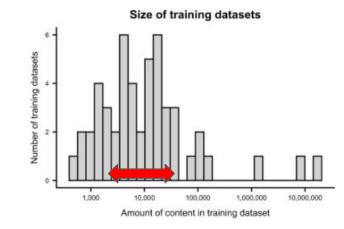
- Different datasets have different **taxonomies**.
- Different datasets have different sources. Twitter is one of the major sources.
 - The works by Davidson (<u>Davidson,2017</u>) and Founta (<u>Founta, 2018</u>) are two highly used dataset from Twitter
 - Twitter is easily accessible.
 - Alt-right platforms are often taken down, hence studies are limited (<u>Voat</u>, <u>Parler</u>)



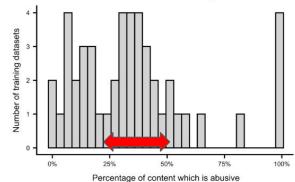
- Different datasets have different **taxonomies**.
- Different datasets have different sources. Twitter is one of the major sources.
- Different datasets have different languages, English being the prominent one.
 - Arabic (<u>Mulki,2019</u>), Italian (<u>Sanguinetti,2018</u>), Spanish (<u>Basile,2019</u>) and Indonesian (<u>Ibrohim,2019</u>) has more than 3 datasets
 - Quality is often questionable for these datasets.
 - Can we benefit from english language datasets?



- Different datasets have different **taxonomies**.
- Different datasets have different **sources**. Twitter is one of the major sources.
- Different datasets have different languages, English being the prominent one.
- Training size and amount of hate/abuse also varies across datasets



Class distribution of training datasets



Vidgen B, Derczynski L (2020) Directions in abusive language training data, a systematic review: Garbage in, garbage out. PLoS ONE 15(12): e0243300. https://doi.org/10.1371/journal.pone.0243300.

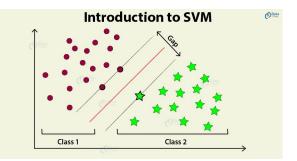
Earlier Detection Methods

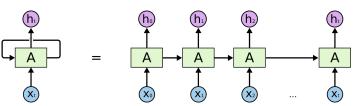
- Features used :-
 - TF-IDF vectors
 - Parts-of-speech tags
 - Linguistic features
 - Sentiment lexicons
 - Frequency counts of URL, username
 - Readability scores
 - Word embeddings
 - Twitter word embeddings (<u>Zimmerman, 2018</u>). <u>Click</u> <u>here</u>
 - Sentence embeddings
 - Google's universal embeddings (<u>Saha, 2018</u>). <u>Click</u> <u>here</u>

```
Davidson,2017)
```

Earlier Detection Methods

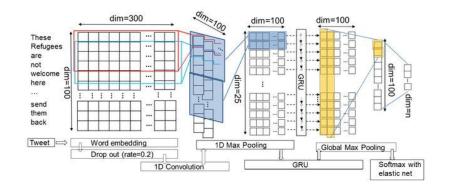
- Features used
- Detection method
 - Logistic regression
 - o SVM (<u>Canós,2018</u>)
 - XGboost (<u>Saha, 2018</u>)
 - LSTM/GRU (Gao,2017)
 - CNN-GRU (Zhang, 2018)





Earlier Detection Methods

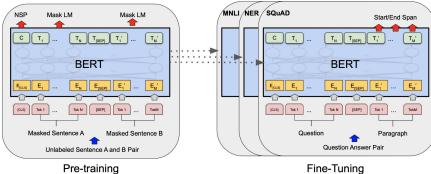
- Features used
- Detection method
 - Logistic regression
 - o SVM (<u>Canós,2018</u>)
 - o XGboost (<u>Saha, 2018</u>)
 - LSTM/GRU (<u>Gao,2017</u>)
 - CNN-GRU (Zhang, 2018)



Dataset	SVM	SVM+	CNN	CNN- GRU _F	CNN+ GRU	State of the art
WZ-L	0.74	0.74	0.80	0.81	0.82	0.74 Waseem 26, best F1
WZ-S.amt	0.86	0.87	0.91	0.92	0.92	0.84 Waseem 25, Best features
WZ-S.exp	0.89	0.90	0.90	0.91	0.92	0.91 Waseem 25, Best features
WZ-S.gb	0.86	0.87	0.91	0.92	0.93	0.90 Gamback 10, best F1
WZ-LS	0.72	0.73	0.81	0.81	0.82	0.82 Park 20, WordCNN 0.81 Park 20, CharacterCNN 0.83 Park 20, HybridCNN
DT	0.87	0.89	0.94	0.94	0.94	0.87 SVM, Davidson 7
RM	0.86	0.89	0.90	0.91	0.92	0.86 SVM, Davidson 7

Current Models

- Earlier models cannot completely capture context
- **BERT** and other transformers model helped in getting improved performance across different datasets (Mozafari, 2019)



Method	Datasets	Precision(%)	Recall(%)	F1-score(%)
Waseem and Hovy [22]	Waseem	72.87	77.75	73.89
Davidson et al. [3]	Davidson	91	90	90
Waseem et al. [23]	Waseem	-	-	80
	Davidson	-	-	89
BERT _{base}	Waseem	81	81	81
	Davidson	91	91	91
$BERT_{base}$ + Nonlinear Layers	Waseem	73	85	76
	Davidson	76	78	77
$BERT_{base} + LSTM$	Waseem	87	86	86
	Davidson	91	92	92
$BERT_{base} + CNN$	Waseem	89	87	88
	Davidson	92	92	92

Current Models

- Earlier models cannot completely capture context
- **BERT** and other transformers model helped in getting improved performance across different datasets (Mozafari, 2019)
- Incorporating lexicon into the BERT architecture \rightarrow HurtBERT (Koufakou, 2020).

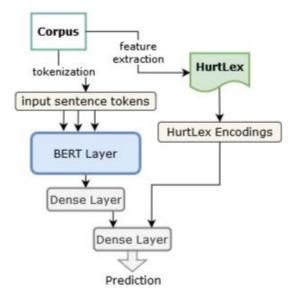
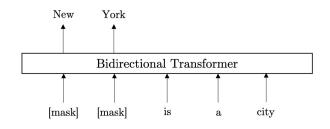


Figure 1: HurtBERT-Enc, our model using HurtLex Encodings

Current Models

- Earlier models cannot completely capture context
- **BERT** and other transformers model helped in getting improved performance across different datasets (Mozafari, 2019)
- Incorporating lexicon into the BERT architecture \rightarrow HurtBERT (Koufakou, 2020).
- Re-training BERT with banned subreddit data → HateBERT (<u>Caselli,2021</u>).

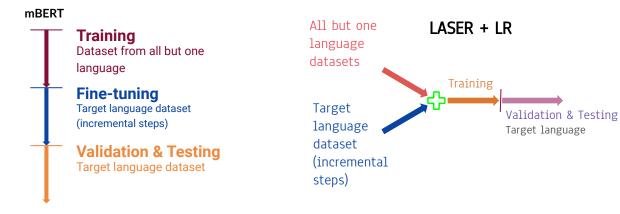


Dataset	Model	Macro F1 P	os. class - F1
Office Free	BERT	.803±.006	.715±.009
OffensEva 2019	HateBERT	.809±.008	$.723 \pm .012$
2019	Best	.829	.599
	BERT	$.727 \pm .008$	$.552 \pm .012$
AbusEval	HateBERT	$.765 \pm .006$.623+.010
	Caselli et al. (2	020).716±.034	.531
	BERT	$.480 \pm .008$.633±.002
HatEval	HateBERT	$.516 \pm .007$	$.645 \pm .001$
	Best	.651	-

Multilingual Hate speech

 Analysis of multilingual models across 9 different languages and 16 datasets (<u>Aluru,2020</u>).

Language	Low resource	High resource
Arabic	Monolingual, $LASER + LR$	Multilingual, mBERT
English	Multilingual, $LASER + LR$	Multilingual, mBERT
German	Monolingual, $LASER + LR$	Translation $+$ BERT
Indonesian	Multilingual, $LASER + LR$	Monolingual, mBERT
Italian	Multilingual, $LASER + LR$	Monolingual, mBERT
Polish	Multilingual, $LASER + LR$	Translation + BERT
Portuguese	Multilingual, $LASER + LR$	Monolingual, LASER+LR
Spanish	Monolingual, $LASER + LR$	Multilingual, mBERT
French	Monolingual, $LASER + LR$	Translation + BERT



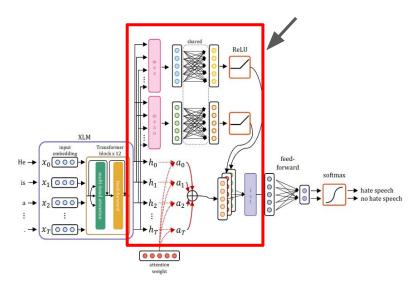
Click logo for demo

39

Multilingual Hate speech

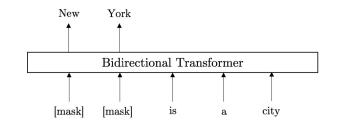
- Benchmarking multilingual models across
 9 different languages and 16 datasets
 (Aluru,2020).
- A novel classification block -AXEL to improve cross lingual transfer (<u>Stappen,2020</u>) on Hateval data.

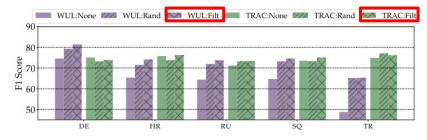
	Dense	Att	AXEL
EN⇒ES	41.31	34.37	53.42
ES⇒EN	60.83	48.47	52.48
ES⇒EN-S	49.38	39.10	53.24
$EN \Rightarrow (ES \rightarrow EN)$	60.59	62.40	64.39
$ES \Rightarrow (EN \rightarrow ES)$	56.89	49.17	58.31
$ES \Rightarrow (EN-S \rightarrow ES)$	56.57	49.17	65.04



Multilingual Hate speech

- Benchmarking multilingual models across 9 different languages and 16 datasets (Aluru,2020).
- A novel classification block -AXEL to improve cross lingual transfer (<u>Stappen,2020</u>) on Hateval data.
- **Pre-training** on keyword based filtered data also can help in cross lingual transfer (<u>Glavaš,2020</u>)





More Modalities

Hey... fucck raghead

It's so hard being a nigga

Multimodal Datasets

- MMHS150K is one of the largest dataset. image-text pair in hate speech research (<u>Gomez,2019</u>).
- Hateful Memes is another dataset of 10K+ posts created by Facebook AI. (<u>Goswami.2021</u>)
- Automated multimodal detection of online **antisemitism**.(<u>Chandra.2021</u>)
- HarMeme is another dataset consisting of 3,544 memes related to COVID-19.(<u>Pramanick.2021</u>)

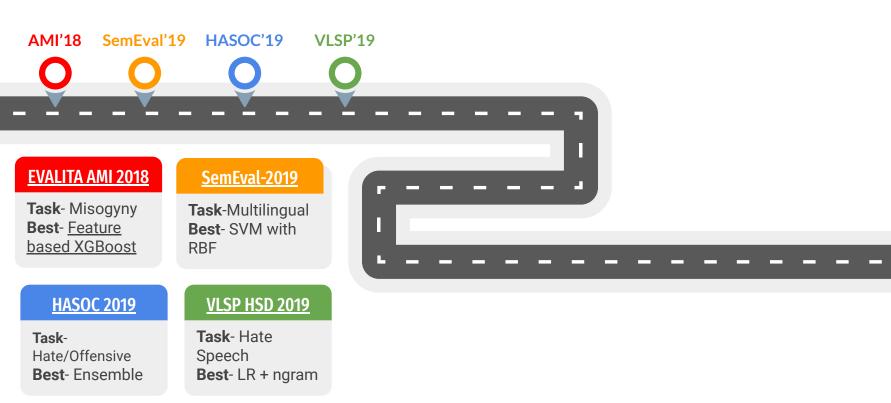
Models

• Text Based

- Glove, Fastext Embedding with Dense ANN layer
- BERT, RoBERTa
- Image Based model
 - ResNet-152, VGG19, ResNeXt-101 etc.
- Multimodal model
 - VILBERT CC, V-BERT COCO
 - VisualBERT, MMBT, UNITER

Modality	Model	2-Class Classification					
		Acc ↑	P↑	R ↑	F1 ↑	$\mathbf{MAE}\downarrow$	MMAE ↓
	Human [†]	90.68	84.35	84.19	83.55	0.1760	0.1723
	Majority	64.76	32.38	50.00	39.30	0.3524	0.5000
Text Only	TextBERT	70.17	65.96	66.38	66.25	0.3173	0.2911
- 01	VGG19	68.12	60.25	61.23	61.86	0.3204	0.3190
	DenseNet-161	68.42	61.08	62.10	62.54	0.3202	0.3125
Image Only	ResNet-152	68.74	61.86	62.89	62.97	0.3188	0.3114
	ResNeXt-101	69.79	62.32	63.26	63.68	0.3175	0.3029
	Late Fusion	73.24	70.28	70.36	70.25	0.3167	0.2927
Image + Text	Concat BERT	71.82	71.58	72.23	71.82	0.3033	0.3156
(Unimodal Pre-training)	MMBT	73.48	68.89	68.95	67.12	0.3101	0.3258
Image + Text	ViLBERT CC	78.53	78.62	81.41	78.06	0.2279	0.1881
(Multimodal Pre-training)	V-BERT COCO	81.36	79.55	81.19	80.13	0.1972	0.1857

Shared tasks timeline

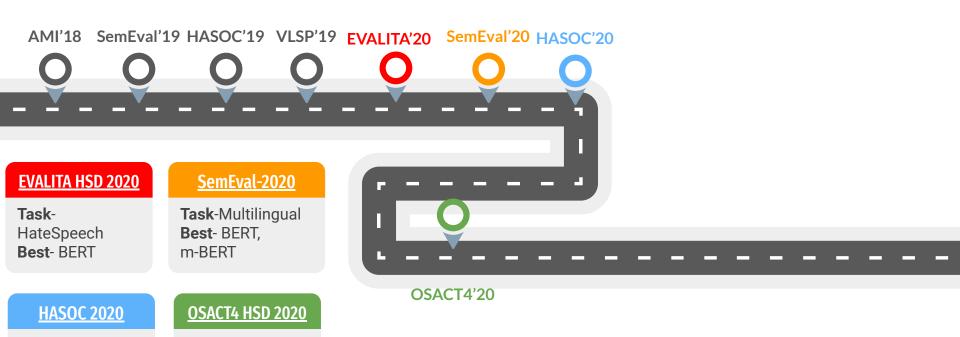


Shared tasks timeline

Task- Arabic

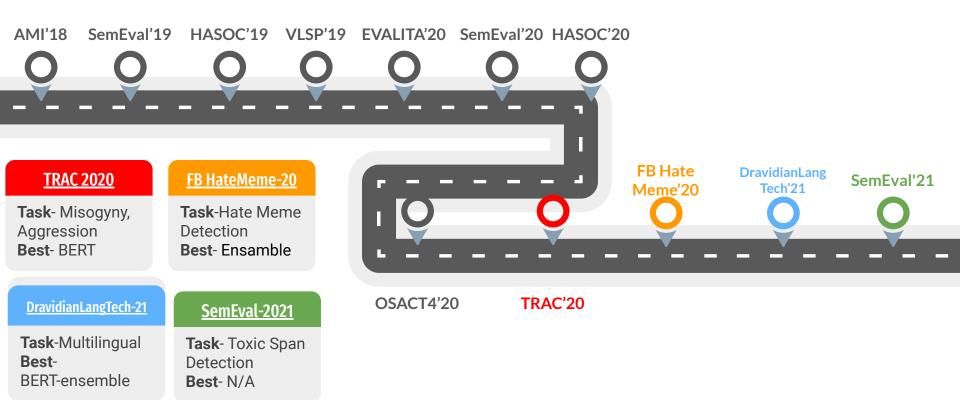
Hate Speech

Best- CNN



Task-Multilingual Best- CNN, BERT

Shared tasks timeline



Pitfalls of Model Evaluation

- Two of the previous studies had spurious evaluations (<u>Badjatiya,2017</u> and <u>Agrawal,2018</u>)
- Types of wrong evaluations
 - Oversampling before train-test split (<u>Agrawal,2018</u>)
 - Feature extraction using the whole train and test split (<u>Badjatiya,2017</u>)

Method	Class	Prec.	Rec.	F1
Badjatiya et al. [2]	Neither	95.5	96.8	96.1
Emb. over all dataset	Racist	94.5	93.5	94.0
	Sexist	91.2	87.5	89.3
	Micro avg.	94.6	94.6	94.6
	Macro avg.	93.7	92.6	93.1
Agrawal and Awekar [1]	Neither	95.1	91.7	93.4
Oversamp. all dataset	Racist	94.9	96.0	95.4
	Sexist	92.5	97.0	94.6
	Micro avg.	94.4	94.4	94.4
	Macro avg.	94.2	94.9	94.5
•	Drop	of 20%	6 in №	1acro
errors	Drop Class	of 20%	<mark>6 in №</mark> Rec.	facro F1
e errors Method	◆			F1
e errors Method Badjatiya et al. [2]	Class	Prec.	Rec.	F1 88.1
e errors Method Badjatiya et al. [2]	Class Neither	Prec. 82.3	Rec. 94.7	F1 88.1 70.2
e errors Method Badjatiya et al. [2]	Class Neither Racist	Prec. 82.3 78.0	Rec. 94.7 64.0	F1 88.1 70.2 60.9
ter correcting e errors Method Badjatiya et al. [2] Emb. over train set	Class Neither Racist Sexist	Prec. 82.3 78.0 84.5	Rec. 94.7 64.0 47.8	
e errors Method Badjatiya et al. [2] Emb. over train set	Class Neither Racist Sexist Micro avg.	Prec. 82.3 78.0 84.5 82.3	Rec. 94.7 64.0 47.8 82.1	F1 88.1 70.2 60.9 80.7 73.1
e errors Method Badjatiya et al. [2] Emb. over train set	Class Neither Racist Sexist Micro avg. Macro avg.	Prec. 82.3 78.0 84.5 82.3 81.6	Rec. 94.7 64.0 47.8 82.1 68.9	F1 88.1 70.2 60.9 80.7 73.1 88.3
e errors Method Badjatiya et al. [2] Emb. over train set	Class Neither Racist Sexist Micro avg. Macro avg. Neither	Prec. 82.3 78.0 84.5 82.3 81.6 90.3	Rec. 94.7 64.0 47.8 82.1 68.9 86.5	F1 88.1 70.2 60.9 80.7
e errors Method Badjatiya et al. [2]	Class Neither Racist Sexist Micro avg. Macro avg. Neither Racist	Prec. 82.3 78.0 84.5 82.3 81.6 90.3 69.6	Rec. 94.7 64.0 47.8 82.1 68.9 86.5 81.3	F1 88.1 70.2 60.9 80.7 73.1 88.3 75.0

Dataset: Waseem and Hovy dataset **Method**: LSTM+GBDT, BiLSTM with attention

Aymé Arango, Jorge Pérez, and Barbara Poblete. 2019. Hate Speech Detection is Not 48 as Easy as You May Think: A Closer Look at Model Validation. *SIGIR*'19

Pitfalls of Model Evaluation

- Two of the previous studies had spurious evaluations (Badjatiya, 2017 and Agrawal, 2018)
- Wrong evaluations
 - **Oversampling before train-test split**
 - train and test split (Badjatiya, 2017)
- **Removing user overlap** between train and test set.

Dataset: Waseem and Hovy dataset Method: LSTM+GBDT, BiLSTM with attention

Method	Class	Prec.	Rec.	F1	
Badjatiya et al. [2]	None	49.6	93.4	64.3	
da 1990 - Secolar Gelda Ada	Hateful	68.8	15.4	23.5	
	Micro avg.	63.8	54.1	46.1	
	Macro avg.	59.2	<mark>54.</mark> 4	43.9	
Agrawal and Awekar [1]	None	47.5	98.0	<mark>63.</mark> 0	
	Hateful	75.3	03.5	06.7	
	Micro avg.	62.3	48.4	35.1	
	Macro avg.	61.4	50.8	34.9	

Aymé Arango, Jorge Pérez, and Barbara Poblete. 2019. Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation. SIGIR'19 49

Pitfalls of Model Evaluation

- Datasets lack testing in the **wild**, train-test comes from the same distribution.
- Different test suites generated to test the classifiers. (Röttger, 2020)
- Error in neutral and positive statement about group

Models

DistilBERT-Davidson - **DB-D** DistilBERT-Founta - **DB-F** Perspective api - **PERS**

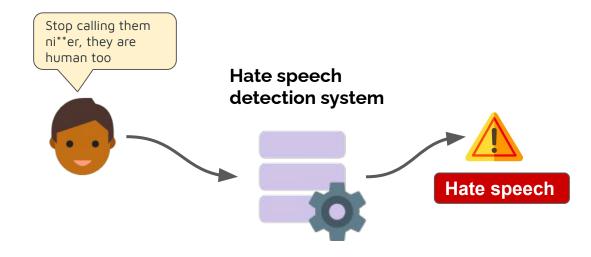
	Functionality	Example	Gold Label	n	Accuracy (%) DB-D DB-F PERS		
ifier	F18: Neutral statement using pro- tected group identifier	"We are a group of [IDENTITY]." "I live with two [IDENTITY]."	non-hateful	126	61.1	76.2	84.1
Grc	F19: Positive statement using pro- tected group identifier	"I love [IDENTITY]." "[IDENTITY] are great."	non-hateful	189	86.2	79.9	54.0

Explainability of Models

Free text

Rationales

• Explainability is a crucial aspect more so in these social dimensions



Explainability of Models

- **Explainability** is a crucial aspect more so in these social dimensions
- Hatexplain first dataset to include rationales along with labels. (Mathew, 2020)

Models	Accuracy	F1 Score	AUROC
CNN-GRU	0.627	0.606	0.793
BERT	0.690	0.674	0.843
BERT-HateXplain	0.698	0.687	0.851

Models performance is better !

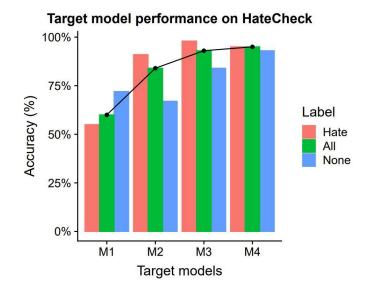
have be	uess the ni**er een to busy to kill mudsh**k .
Label	Hate speech
Target	Women, African
	6

Click logo for demo

Dynamically Generated Data

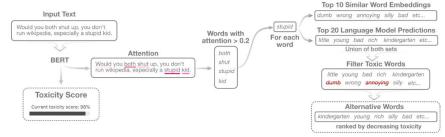
• A human-and model-in-the-loop process for training online hate detection models. (<u>Vidgen.2021</u>)

Round	Total	Not	Hate
R 1	54.7%	64.6%	49.2%
R2	34.3%	38.9%	29.7%
R3	27.8%	20.5%	35.1%
R4	27.7%	23.7%	31.7%



Explainability of Models

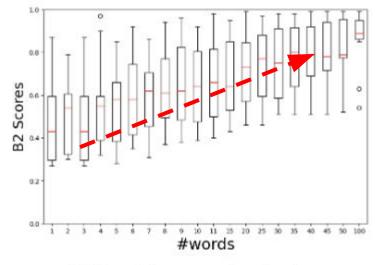
- **Explainability** is a crucial aspect more so in these social dimensions
- Hatexplain first dataset to include rationales as well as target along with labels.(Mathew,2020)
- **RECAST** tool to suggest alt wordings based on attention scores. (Wright, 2021)



Advantage - reduce toxicity, way of debugging model Disadvantage - malicious users might game the system.

- Bias from different directions
 - How is data selected ?
 - Who is the annotator?
 - Who is the speaker/target?
- Often hate speech dataset can carry bias related to some identity words (Ousidhoum,2020)
- Increase in semantic relatedness between corpus and keywords as number of keywords are increased

No of topics kept fixed at 8



(b) B₂ variations per number of words.

B2 measures how frequently keyword appear in topics

• Bias from different directions

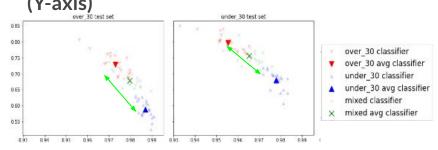
- How is data selected ?
- Who is the **annotator**?
- Who is the speaker/target?
- Data using expert annotators (activists) performs better than amateurs (crowdsource) (Waseem,2016)

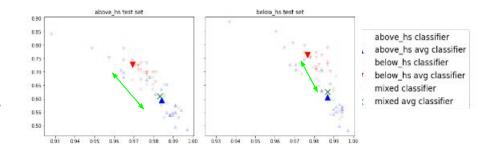
		Amateu	ır		Expert	
Feature Set	F1	Recall	Precision	F1	Recall	Precision
Close	86.39	88.60%	87.59%	91.24	92.49%	92.67%
Middling	84.07	86.76%	85.43%	87.81	90.10%	88.53%
Distant	71.71	80.17%	82.05%	77.77	84.76%	71.85%
All	86.39	88.60%	87.59%	90.77	92.20%	92.23%
Best	83.88	86.68%	85.54%	91.19	92.49%	92.50%
Baseline	70.84	79.80%	63.69%	77.77	84.76%	71.85%

Table 5: Scores obtained for each of the feature sets.

- Bias from different directions
 - How is data selected ?
 - Who is the **annotator**?
 - Who is the speaker/target?
- Data using expert annotators (activists) performs better than amateurs (crowdsource) (Waseem,2016)
- A study found significant bias for age and education of the annotators. (Kuwatly,2020)

Specificity (X-axis) vs sensitivity (Y-axis)





Method - Trained different classifiers on data annotated by different group and evaluated them

- Bias from different directions
 - How is data selected ?
 - Who is the annotator?
 - Who is the **speaker/target**?
- Often hate speech model can detect false positives for tweets written by different community (Davidson,2019)

Dataset	Class	$\widehat{p_{i_{black}}}$	$\widehat{p_{i_{white}}}$	t	p	piblack piwhite
Waseem and Hovy	Racism	0.001	0.003	-20.818	非非非	0.505
	Sexism	0.083	0.048	101.636	非非非	1.724
Waseem	Racism	0.001	0.001	0.035		1.001
	Sexism	0.023	0.012	64.418	冰冰冰	1.993
	Racism and sexism	0.002	0.001	4.047	冰冰冰	1.120
Davidson et al.	Hate	0.049	0.019	120.986	冰冰冰	2.573
	Offensive	0.173	0.065	243.285	***	2.653
Golbeck et al.	Harassment	0.032	0.023	39.483	***	1.396
Founta et al.	Hate	0.111	0.061	122.707	***	1.812
	Abusive	0.178	0.080	211.319	***	2.239
	Spam	0.028	0.015	63.131	***	1.854

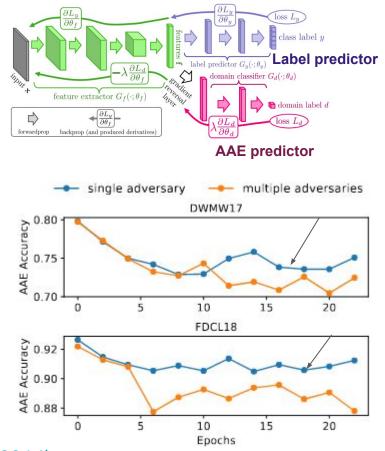
Table 2: Experiment 1

Values greater than 1 indicate that black-aligned tweets are classified as belonging to class at a higher rate than white

Community not annotated

Bias in Data/Models

- Bias from different directions
 - How is data selected ?
 - Who is the annotator?
 - Who is the **speaker/target**?
- Often hate speech model can detect false positives for tweets written by different community (Davidson, 2019).
- Training with adversarial loss can help reduce the bias (Xia,2020).



Dataset and model used for dialect identification (Blodgett, 2016)

- Bias from different directions
 - How is data selected ?
 - Who is the annotator?
 - Who is the **speaker/target**?
- Often hate speech model can detect false positives for tweets written by different community (Davidson, 2019).
- Training with adversarial loss can help reduce the bias (Xia,2020).
- Using rationales can make the models less biased towards different targets (Mathew,2020)

Models	GMB-Sub	GMB-BPSN	GMB-BNSP
CNN-GRU	0.654	0.623	0.659
BERT	0.762	0.709	0.757
BERT-HateXplain	0.807	0.745	0.763

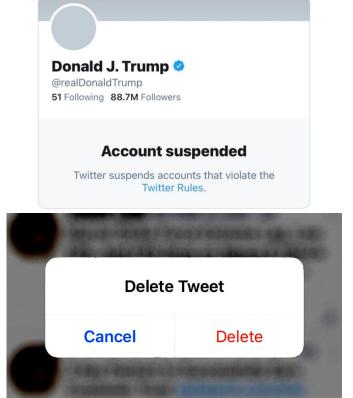
Models less biased !

Mitigating Hate Speech

- Definitions and related concepts
- Analysis of hate speech
 - Prevalence
 - Effect
- Detection of hate speech
 - Datasets
 - Traditional methods
 - Sequential models
 - Transformer based models
 - Challenges
- Mitigation of hate speech
 - Effects of Ban
 - Counterspeech detection
 - Counterspeech generation
 - $\circ \quad \ \ {\rm Effect} \ {\rm of \ counter \ speech}$
- SWOT analysis

What is done after detecting hate speech?

- Deletion of posts
- Suspension of user accounts
- Shadow banning



Is banning effective?

Is banning effective?

Case study of Reddit[2015]

- In 2015, Reddit closed several subreddits due to violations of Reddit's anti-harassment policy.
- Foremost among them were r/fatpeoplehate and r/CoonTown
- How effective was the ban?

This community has been banned

This subreddit was banned due to a violation of our content policy, specifically, our sitewide rules regarding violent content. Banned 1 day ago.

Is banning effective ?

Case study of Reddit[2015]

- In 2015, Reddit closed several subreddits due to violations of Reddit's anti-harassment policy.
- Foremost among them were r/fatpeoplehate and r/CoonTown
- How effective was the ban?

You Can't Stay Here: The Efficacy of Reddit's 2015 Ban Examined Through Hate Speech [Chandrasekharan 2017]

This community has been banned

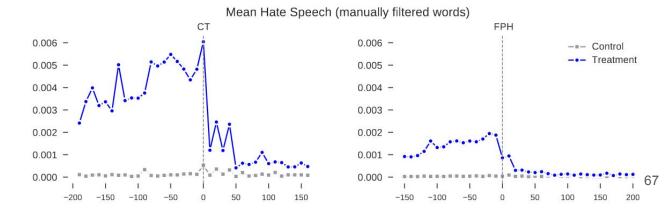
This subreddit was banned due to a violation of our content policy, specifically, our sitewide rules regarding violent content. Banned 1 day ago.

The Efficacy of Reddit's 2015 Ban

• User-level - Following Reddit's 2015 ban, a large, significant percentage of users from banned communities left Reddit. Others migrated to other sub-reddits where hate was prominent

The Efficacy of Reddit's 2015 Ban

- User-level Following Reddit's 2015 ban, a large, significant percentage of users from banned communities left Reddit. Others migrated to other sub-reddits where hate was prominent
- **Community-level** The migrant users did not bring hate speech with them to their new communities, nor did the longtime residents pick it up from them. **Reddit did not "spread the infection"**.

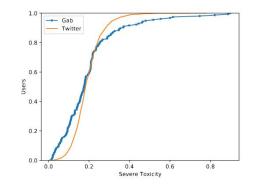


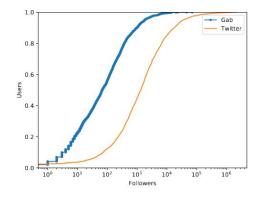
What about the users who left?

What about the users who left ?

Users who get banned on Twitter/Reddit exhibit an **increased level** of activity and toxicity on Gab, although the **audience** they potentially reach **decreases**

Understanding the Effect of Deplatforming on Social Networks [Ali 2021]





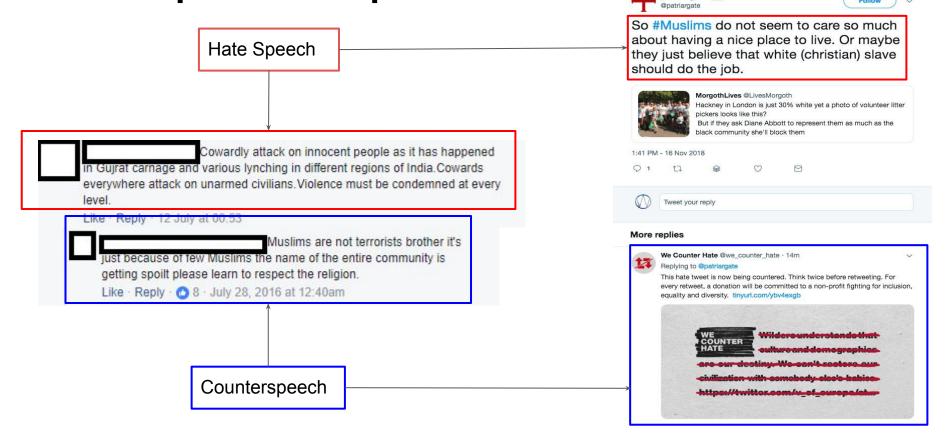
Are there any alternatives?

Doctrine of Counterspeech/Counter-Narrative

• The counterspeech doctrine posits that the proper response to negative speech is to counter it with positive expression.

• Combating hate speech in this way has some advantages: it is faster, more flexible and responsive, capable of dealing with extremism from anywhere and in any language and it does not form a barrier against the principle of free and open public space for debate.

Counterspeech Examples



patriargate

Follow

- 1. Presenting facts to correct misstatements or mis-perceptions
- 2. Pointing out hypocrisy or contradictions
- 3. Affiliation
- 4. Visual Communication
- 5. Humor and sarcasm
- 6. Denouncing hateful or dangerous speech
- 7. Tone

- 1. Presenting facts to correct misstatements or mis-perceptions
- 2. Pointing out hypocrisy or contradictions
- 3. Affiliation
- 4. Visual Communication
- 5. Humor and sarcasm
- 6. Denouncing hateful or dangerous speech
- 7. Tone

Hey I'm Christian and I'm gay and this guy is so wrong. Stop the justification and start the accepting. I know who my heart and soul belong to and that's with God: creator of heaven and earth. We all live in his plane of consciousness so it's time we started accepting one another. That's all

- 1. Presenting facts to correct misstatements or mis-perceptions
- 2. Pointing out hypocrisy or contradictions
- 3. Affiliation
- 4. Visual Communication
- 5. Humor and sarcasm
- 6. Denouncing hateful or dangerous speech
- 7. Tone

- 1. Presenting facts to correct misstatements or mis-perceptions
- 2. Pointing out hypocrisy or contradictions
- 3. Affiliation
- 4. Visual Communication
- 5. Humor and sarcasm
- 6. Denouncing hateful or dangerous speech
- 7. Tone

- 1. Presenting facts to correct misstatements or mis-perceptions
- 2. Pointing out hypocrisy or contradictions
- 3. Affiliation
- 4. Visual Communication
- 5. Humor and sarcasm
- 6. Denouncing hateful or dangerous speech

7. Tone

"I am a Christian, and I believe we're to love everyone!! No matter age, race, religion, sex, size, disorder... whatever!! I LOVE PEOPLE!! treat EVERYONE with respect"

Data collected and annotated from comments of youtube videos showing hate towards some communities

	Tar	get comm	unity	Total
Type of counterspeech	Jews	Blacks	LGBT	
Presenting facts	308	85	359	752
Pointing out hypocrisy or contradictions	282	230	526	1038
Warning of offline or online consequences	112	417	199	728
Affiliation	206	159	200	565
Denouncing hateful or dangerous speech	376	482	473	1331
Humor	227	255	618	1100
Positive tone	359	237	268	864
Hostile	712	946	1083	2741
Total	2582	2811	3726	9119

Thou Shalt Not Hate: Countering Online Hate Speech [<u>Mathew 2019</u>]

Data collected and annotated from comments of youtube videos showing hate towards some communities

	Tar	get comm	unity	Total
Type of counterspeech	Jews	Blacks	LGBT	
Presenting facts	308	85	359	752
Pointing out hypocrisy or contradictions	282	230	526	1038
Warning of offline or online consequences	112	417	199	728
Affiliation	206	159	200	565
Denouncing hateful or dangerous speech	376	482	473	1331
Humor	227	255	618	1100
Positive tone	359	237	268	864
Hostile	712	946	1083	2741
Total	2582	2811	3726	9119

Thou Shalt Not Hate: Countering Online Hate Speech [<u>Mathew 2019</u>]

Data collected and annotated from comments of youtube videos showing hate towards some communities

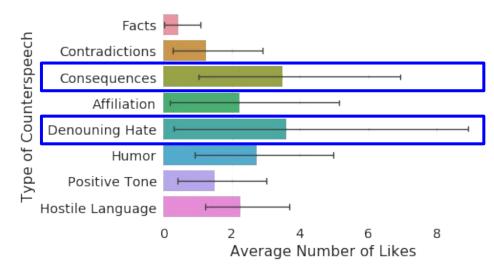
	Tar	get comm	unity	Total
Type of counterspeech	Jews	Blacks	LGBT	
Presenting facts	308	85	359	752
Pointing out hypocrisy or contradictions	282	230	526	1038
Warning of offline or online consequences	112	417	199	728
Affiliation	206	159	200	565
Denouncing hateful or dangerous speech	376	482	473	1331
Humor	227	255	618	1100
Positive tone	359	237	268	864
Hostile	712	946	1083	2741
Total	2582	2811	3726	9119

Thou Shalt Not Hate: Countering Online Hate Speech [<u>Mathew 2019</u>]

Click logo for demo

Counterspeech in Web

colab



Thou Shalt Not Hate: Countering Online Hate Speech [<u>Mathew 2019</u>]

In case of the African-American community, the counterspeakers call out for racism and talk about consequences of their actions

Example:

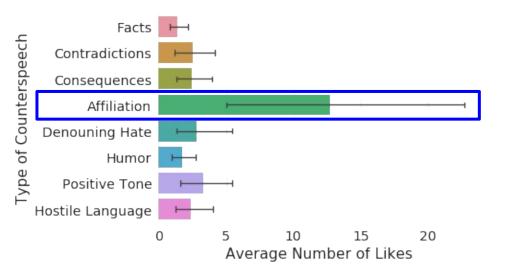
"i hope these cops got fired! this is bullshit"

"Sad to see the mom teaching her children to be racist and hateful. The way the guy handled it was great."

Click logo for demo

Counterspeech in Web

colab



Thou Shalt Not Hate: Countering Online Hate Speech [<u>Mathew 2019</u>]

In case of the Jews community, we observe that the people affiliate with both the target and the source community ('Muslims', 'Christians') to counter the hate message.

Example:

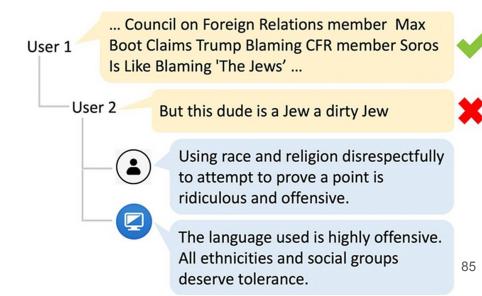
"I'm Jewish And I'm really glad there some people that stand up for us And I have no problems with Muslims. We're all brothers and sisters"

Can we generate counterspeech ?

Can we generate counterspeech ?

The core idea is to **directly intervene** in the discussion with textual responses that are **meant to counter the hate content** and prevent it from further spreading

Manual intervention against hate speech is not scalable



Datasets for counterspeech generation

- CONAN Dataset [<u>Chung 2019</u>] (NGO Trainers)
- Intervene Dataset [<u>Qian 2019</u>] (Gab & Reddit)
- Multitarget CONAN Dataset [Fanton 2021] (Synthetic + NGO Trainers)

Туре	Hate speech source	Counter speech source	Annotation	Annotators
Crawling (<u>Mathew 2019</u>)	Online	Online	Labeling	Crowd
Crowdsourcing (<u>Qian 2019</u>)	Online	Synthetic	Response Generation	Crowd
Niche sourcing (<u>Chung 2019</u>)	Online/ Synthetic	Synthetic	Response Generation	Experts - NGO

Туре	Hate speech source	Counter speech source	Annotation	Annotators
Crawling (<u>Mathew 2019</u>)	Online	Online	Labeling	Crowd
Crowdsourcing (<u>Qian 2019</u>)	Online	Synthetic	Response Generation	Crowd
Niche sourcing (<u>Chung 2019</u>)	Online/ Synthetic	Synthetic	Response Generation	Experts - NGO

Туре	Hate speech source	Counter speech source	Annotation	Annotators
Crawling (<u>Mathew 2019</u>)	Online	Online	Labeling	Crowd
Crowdsourcing (<u>Qian 2019</u>)	Online	Synthetic	Response Generation	Crowd
Niche sourcing (<u>Chung 2019</u>)	Online/ Synthetic	Synthetic	Response Generation	Experts - NGO

Туре	Hate speech source	Counter speech source	Annotation	Annotators
Crawling (<u>Mathew 2019</u>)	Online	Online	Labeling	Crowd
Crowdsourcing (<u>Qian 2019</u>)	Online	Synthetic	Response Generation	Crowd
Niche sourcing (<u>Chung 2019</u>)	Online/ Synthetic	Synthetic	Response Generation	Experts - NGO

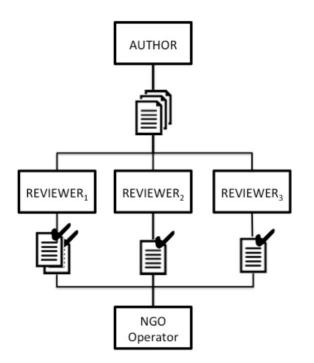
Counterspeech collection Strategy <u>Tekiroglu 2020</u>

Author-Reviewer framework [<u>Tekiroglu 2020</u>]: An author is tasked with text generation and a reviewer can be a human or a classifier model that filters the produced output.

A validation/post-editing phase is conducted with NGO operators over the filtered data.

This framework is scalable allowing to obtain datasets that are suitable in terms of diversity, novelty, and quantity.

Example - Multitarget CONAN [Fanton et.al]



Generation models

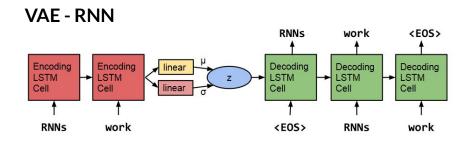
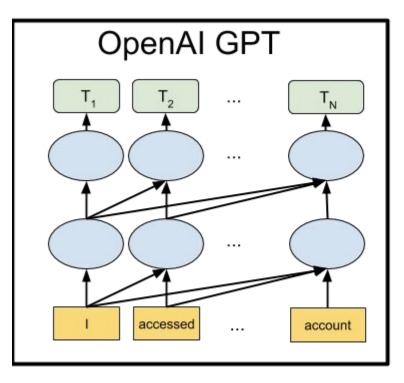
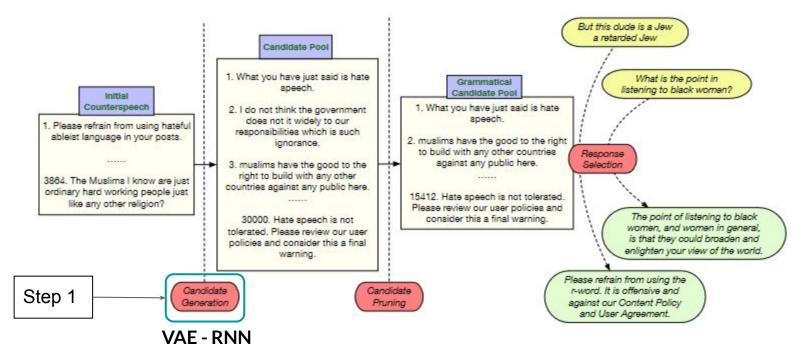
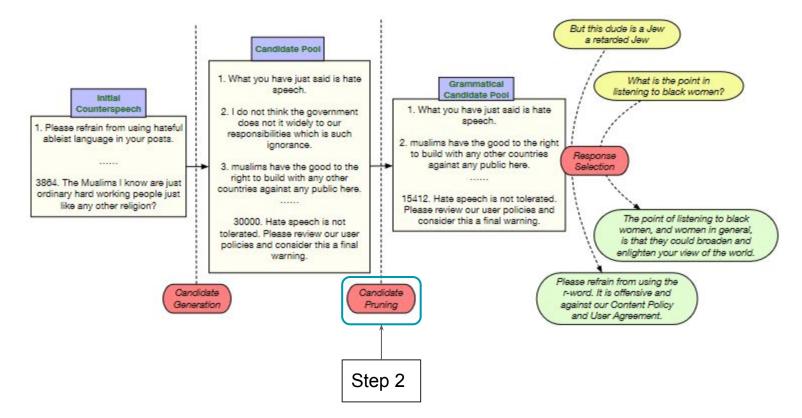


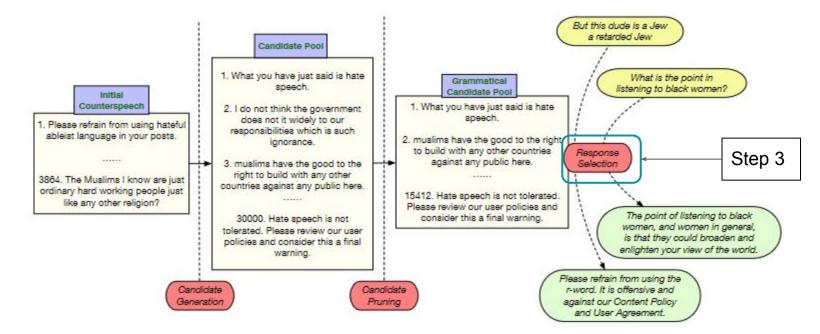
Figure 1: The core structure of our variational autoencoder language model. Words are represented using a learned dictionary of embedding vectors.

Generation models









				Diver	rsity					Releva	nce		LQ.
		Dist-1	Dist-2	Ent-1	Ent-2	SB1*	SB2*	B2	R2	MS	BS	BM25	GR
	Seq2Seq	0.06	0.23	5.12	6.63	0.54	0.30	3.4	3.0	4.4	0.83	2.66	0.38
CONAN	MMI	0.06	0.23	4.88	6.41	0.57	0.35	2.9	2.3	3.9	0.82	1.63	0.33
N	SpaceFusion	0.00	0.00	1.06	1.86	0.98	0.98	0.0	0.0	-14.2	0.76	0.12	0.38
8	BART	0.04	0.23	5.98	7.80	0.52	0.26	39	36	71	0.84	1.86	0.71
-	GPS	0.06	0.27	5.77	7.41	0.43	0.19	7.1	6.5	10.9	0.85	5.43	0.71
5	Seq2Seq	0.04	0.24	5.07	6.61	0.58	0.31	6.5	4.0	6.8	0.85	0.14	0.64
it	MMI	0.05	0.32	5.11	6.76	0.56	0.29	6.4	4.0	6.9	0.85	0.14	0.56
Reddit	SpaceFusion	0.00	0.02	2.73	4.16	0.87	0.76	0.9	0.0	-2.5	0.79	0.16	0.26
Re	BART	0.03	0.19	5.08	6.63	0.69	0.55	7.8	6.9	7.8	0.86	0.83	0.72
100	GPS	0.09	0.53	5.74	7.61	0.41	0.15	8.1	7.1	7.8	0.87	2.58	0.75
	Seq2Seq	0.02	0.17	5.14	6.71	0.56	0.30	7.5	5.0	6.7	0.86	0.14	0.67
	MMI	0.02	0.17	5.28	6.82	0.55	0.30	5.8	3.6	6.2	0.85	0.18	0.65
Gab	SpaceFusion	0.00	0.01	3.72	4.84	0.81	0.73	1.8	0.1	0.0	0.82	0.17	0.21
9	BART	0.03	0.17	5.42	7.25	0.60	0.38	6.0	64	6.8	0.86	0.81	0.72
	GPS	0.06	0.40	5.82	7.83	0.39	0.15	7.6	6.4	6.8	0.87	1.94	0.76

				Diver	rsity			1		Releva	nce		LQ.
		Dist-1	Dist-2	Ent-1	Ent-2	SB1*	SB2*	B2	R 2	MS	BS	BM25	GR
	Seq2Seq	0.06	0.23	5.12	6.63	0.54	0.30	3.4	3.0	4.4	0.83	2.66	0.38
CONAN	MMI	0.06	0.23	4.88	6.41	0.57	0.35	2.9	2.3	3.9	0.82	1.63	0.33
Z	SpaceFusion	0.00	0.00	1.06	1.86	0.98	0.98	0.0	0.0	-14.2	0.76	0.12	0.38
8	BART	0.04	0.23	5.98	7.80	0.52	0.26	39	36	71	0.84	1.86	0.71
<u> </u>	GPS	0.06	0.27	5.77	7.41	0.43	0.19	7.1	6.5	10.9	0.85	5.43	0.71
2	Seq2Seq	0.04	0.24	5.07	6.61	0.58	0.31	6.5	4.0	6.8	0.85	0.14	0.64
it	MMI	0.05	0.32	5.11	6.76	0.56	0.29	6.4	4.0	6.9	0.85	0.14	0.56
Reddit	SpaceFusion	0.00	0.02	2.73	4.16	0.87	0.76	0.9	0.0	-2.5	0.79	0.16	0.26
Re	BART	0.03	0.19	5.08	6.63	0.69	0.55	7.8	6.9	7.8	0.86	0.83	0.72
1000	GPS	0.09	0.53	5.74	7.61	0.41	0.15	8.1	7.1	7.8	0.87	2.58	0.75
	Seq2Seq	0.02	0.17	5.14	6.71	0.56	0.30	7.5	5.0	6.7	0.86	0.14	0.67
	MMI	0.02	0.17	5.28	6.82	0.55	0.30	5.8	3.6	6.2	0.85	0.18	0.65
Gab	SpaceFusion	0.00	0.01	3.72	4.84	0.81	0.73	1.8	0.1	0.0	0.82	0.17	0.21
G	BART	0.03	0.17	5.42	7.25	0.60	0.38	6.0	6.1	6.8	0.86	0.81	0.72
	GPS	0.06	0.40	5.82	7.83	0.39	0.15	7.6	6.4	6.8	0.87	1.94	0.76

				Diver	rsity			1		Releva	nce		LQ.
		Dist-1	Dist-2	Ent-1	Ent-2	SB1*	SB2*	B2	R2	MS	BS	BM25	GR
	Seq2Seq	0.06	0.23	5.12	6.63	0.54	0.30	3.4	3.0	4.4	0.83	2.66	0.38
Z	MMI	0.06	0.23	4.88	6.41	0.57	0.35	2.9	2.3	3.9	0.82	1.63	0.33
CONAN	SpaceFusion	0.00	0.00	1.06	1.86	0.98	0.98	0.0	0.0	-14.2	0.76	0.12	0.38
8	BART	0.04	0.23	5.98	7.80	0.52	0.26	39	36	71	0.84	1.86	0.71
U	GPS	0.06	0.27	5.77	7.41	0.43	0.19	7.1	6.5	10.9	0.85	5.43	0.71
8	Seq2Seq	0.04	0.24	5.07	6.61	0.58	0.31	6.5	4.0	6.8	0.85	0.14	0.64
it	MMI	0.05	0.32	5.11	6.76	0.56	0.29	6.4	4.0	6.9	0.85	0.14	0.56
Reddit	SpaceFusion	0.00	0.02	2.73	4.16	0.87	0.76	0.9	0.0	-2.5	0.79	0.16	0.26
Re	BART	0.03	0.19	5.08	6.63	0.69	0.55	7.8	6.9	7.8	0.86	0.83	0.72
100.00	GPS	0.09	0.53	5.74	7.61	0.41	0.15	8.1	7.1	7.8	0.87	2.58	0.75
	Seq2Seq	0.02	0.17	5.14	6.71	0.56	0.30	7.5	5.0	6.7	0.86	0.14	0.67
	MMI	0.02	0.17	5.28	6.82	0.55	0.30	5.8	3.6	6.2	0.85	0.18	0.65
Gab	SpaceFusion	0.00	0.01	3.72	4.84	0.81	0.73	1.8	0.1	0.0	0.82	0.17	0.21
9	BART	0.03	0.17	5.42	7.25	0.60	0.38	6.0	64	6.8	0.86	0.81	0.72
	GPS	0.06	0.40	5.82	7.83	0.39	0.15	7.6	6.4	6.8	0.87	1.94	0.76

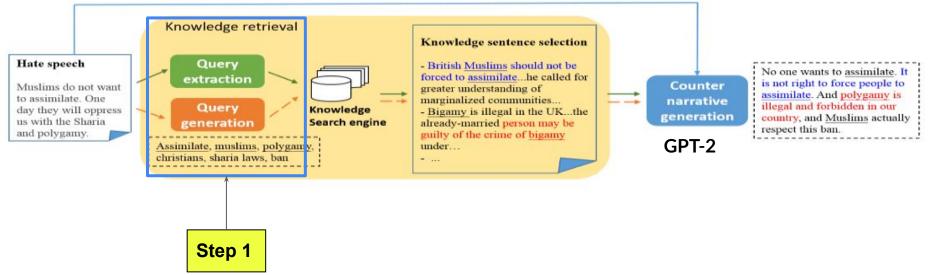
Hate Speech	Generated Counterspeech by GPS
(a): All the Muslims should have been punished for yester- day, not only a few. Citizen will take action if the government does not do anything.	You cannot blame all people for actions of a few. Banning something altogether will not solve anything.
(b): The world would be a better place without Muslims. They are only killing and raping our children.	The world would actually be a very dark place without Mus- lims who contribute a lot to our society. What about our Mus- lim doctors, scientists, philanthropists, actors, job-creators?
(c): What is the point in listening to black women? They are all retarded.	The point of listening to black women, and women in general, is that they could broaden and enlighten your view of the world.

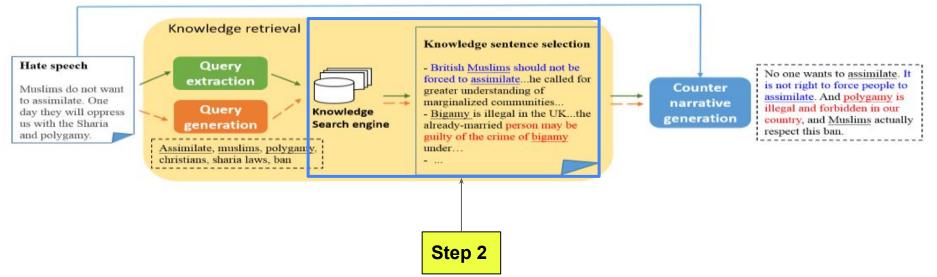
Problems: Hallucination

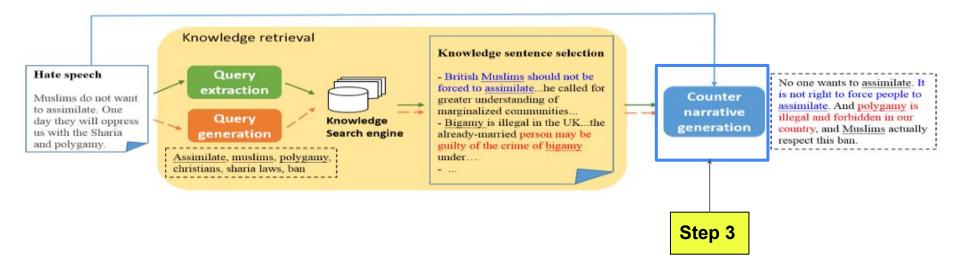
HS: Muslims are invading our country

CN: Actually, there were 16,938,000 Muslims in the UK in 2016, so if you exclude London, that is actually increasing by 2%, which doesn't seem very significant.

Table 2: Hallucinated CN generated by GPT-2 that is fluent and credible (according to Office for National Statistics, the Muslim population is just above 3M).







							KN O	verlap (ng	gram)
Models	Nov.	RR	B-2	R-L	#Word	#Sent.	1	2	3
without knowledge				0220000000					
TRF	0.467	7.72	0.082	0.094	21.47	1.70	-	-	-
GPT-2	0.688	9.04	0.045	0.100	15.95	1.35	-	-	-
Train _{cn}	-	3.91	(1)	-	21.79	1.87	0.307	0.054	0.016
with knowledge									
Candela (Q_{hs})	0.692	21.87	0.040	0.098	23.85	2.47	0.173	0.008	0.001
GPT-2 _{KN}	-								
w/ Q_{hs}	0.723	8.13	0.082	0.094	15.60	1.32	0.258	0.023	0.008
w/ Qgen	0.728	7.48	0.067	0.091	12.75	1.17	0.260	0.050	0.019
w/ Qhsugen	0.735	6.30	0.085	0.103	15.35	1.59	0.358	0.068	0.024
w/ QhsUcn	0.727	7.17	0.166	0.110	13.10	1.16	0.282	0.058	0.022
GPT-2 _{KN,MT}									
w/ Q_{hs}	0.744	11.69	0.050	0.090	13.35	1.17	0.269	0.049	0.017
w/ Q_{gen}	0.731	10.37	0.052	0.092	13.34	1.14	0.253	0.044	0.017
w/ Qhsugen	0.747	7.59	0.091	0.090	16.91	1.26	0.269	0.033	0.009
w/ QhsUcn	0.731	9.56	0.048	0.107	13.05	1.13	0.276	0.057	0.023
XNLG					1010000000	201.0214			
w/Qhs	0.824	14.42	0.073	0.084	55.51	3.71	0.841	0.650	0.558
w/ Qgen	0.819	6.88	0.097	0.084	55.64	3.64	0.849	0.656	0.558
w/ Qhsugen	0.812	6.98	0.074	0.089	57.58	3.00	0.828	0.579	0.475
w/ QhsUcn	0.819	5.69	0.076	0.116	55.69	3.42	0.840	0.631	0.529

105

Models	Nov.	RR	B-2	R-L	#Word	#Sent.	KN overlap (ngram)		
							1	2	3
without knowledge				12112002000					
TRF	0.467	7.72	0.082	0.094	21.47	1.70	-	-	-
GPT-2	0.688	9.04	0.045	0.100	15.95	1.35	-	-	-
Train _{cn}	÷	3.91	(;)	-	21.79	1.87	0.307	0.054	0.016
with knowledge									
Candela (Q_{hs})	0.692	21.87	0.040	0.098	23.85	2.47	0.173	0.008	0.001
GPT-2 _{KN}									
w/Qhs	0.723	8.13	0.082	0.094	15.60	1.32	0.258	0.023	0.008
w/ Qgen	0.728	7.48	0.067	0.091	12.75	1.17	0.260	0.050	0.019
w/ Qhsugen	0.735	6.30	0.085	0.103	15.35	1.59	0.358	0.068	0.024
w/ QhsUcn	0.727	7.17	0.166	0.110	13.10	1.16	0.282	0.058	0.022
GPT-2 _{KN,MT}									
w/Qhs	0.744	11.69	0.050	0.090	13.35	1.17	0.269	0.049	0.017
w/ Q_{gen}	0.731	10.37	0.052	0.092	13.34	1.14	0.253	0.044	0.017
w/ Qhsugen	0.747	7.59	0.091	0.090	16.91	1.26	0.269	0.033	0.009
w/ QhsUcn	0.731	9.56	0.048	0.107	13.05	1.13	0.276	0.057	0.023
XNLG					1010000000	201.0214			
w/ Q_{hs}	0.824	14.42	0.073	0.084	55.51	3.71	0.841	0.650	0.558
w/ Q_{gen}	0.819	6.88	0.097	0.084	55.64	3.64	0.849	0.656	0.558
w/ Qhsugen	0.812	6.98	0.074	0.089	57.58	3.00	0.828	0.579	0.475
w/ QhsUcn	0.819	5.69	0.076	0.116	55.69	3.42	0.840	0.631	0.529

106

Models	Nov.	RR	B-2	R-L	#Word		KN overlap (ngram)		
						#Sent.	1	2	3
without knowledge			1000	12112002.000					
TRF	0.467	7.72	0.082	0.094	21.47	1.70	-	-	-
GPT-2	0.688	9.04	0.045	0.100	15.95	1.35	-	-	-
Train _{cn}	4 2	3.91		-	21.79	1.87	0.307	0.054	0.016
with knowledge									
Candela (Q_{hs})	0.692	21.87	0.040	0.098	23.85	2.47	0.173	0.008	0.001
GPT-2 _{KN}									
w/ Qhs	0.723	8.13	0.082	0.094	15.60	1.32	0.258	0.023	0.008
w/ Qgen	0.728	7.48	0.067	0.091	12.75	1.17	0.260	0.050	0.019
w/ Qhsugen	0.735	6.30	0.085	0.103	15.35	1.59	0.358	0.068	0.024
w/ $Q_{hs\cup cn}$	0.727	7.17	0.166	0.110	13.10	1.16	0.282	0.058	0.022
GPT-2 _{KN,MT}					(1997) - Alexandra				
w/ Q_{hs}	0.744	11.69	0.050	0.090	13.35	1.17	0.269	0.049	0.017
w/ Qgen	0.731	10.37	0.052	0.092	13.34	1.14	0.253	0.044	0.017
w/ Qhsugen	0.747	7.59	0.091	0.090	16.91	1.26	0.269	0.033	0.009
w/ Qhsucn	0.731	9.56	0.048	0.107	13.05	1.13	0.276	0.057	0.023
XNLG									
w/Qhs	0.824	14.42	0.073	0.084	55.51	3.71	0.841	0.650	0.558
w/ Qgen	0.819	6.88	0.097	0.084	55.64	3.64	0.849	0.656	0.558
w/ Qhsugen	0.812	6.98	0.074	0.089	57.58	3.00	0.828	0.579	0.475
w/ QhsUcn	0.819	5.69	0.076	0.116	55.69	3.42	0.840	0.631	0.529

107

Challenges ahead

- Generating diverse types of counterspeech.
- Lack of generalisation vs cost of building dataset.
- Evaluation of generative models.
- From generation models to tools.

Is counterspeech effective?

Considerations for Successful Counterspeech. Benesch 2016

- When do you call a counterspeech as successful?
- First is when the speech has a favorable impact on the original (hateful) user, shifting his or her discourse if not also his or her beliefs. This is usually indicated by an apology or recanting, or the deletion of the original tweet or account.

 \checkmark

Today I was reminded of some past insensitive tweets, and I am deeply sorry to anyone I offended. I have since deleted those tweets as they do not reflect my views or who I am today.

3:08 PM · Nov 20, 2019 · Twitter for iPhone

Considerations for Successful Counterspeech. Benesch 2016

- When do you call a counterspeech as successful?
- First is when the speech has a favorable impact on the original (hateful) user, shifting his or her discourse if not also his or her beliefs. This is usually indicated by an apology or recanting, or the deletion of the original tweet or account.
- Second type of success is to positively affect the discourse norms of the 'audience' of a counterspeech conversation: all of the other users or 'cyberbystanders' who read one or more of the relevant exchange of tweets.

Considerations for Successful Counterspeech. Benesch 2016

Recommended Strategies

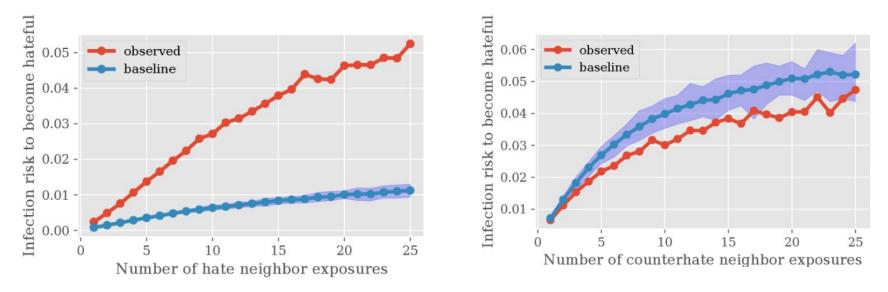
- Warning of Consequences
- Shaming/Labeling
- Empathy and Affiliation
- Humor
- Images

Discouraged Strategies

- Hostile or Aggressive Tone, Insults
- Fact-Checking
- Harassment and Silencing

Evidence from social media platforms

Analysis reveals that counterhate messages can discourage users from turning hateful in the first place. [Ziem 2020]



Evidence from social media platforms

Their findings suggest that organized hate speech is associated with changes in public discourse and that counter speech—especially when organized—may help curb hateful rhetoric in online discourse [Garland 2020]

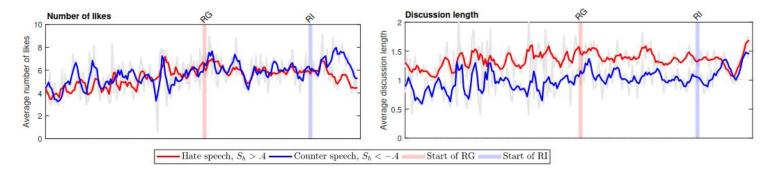


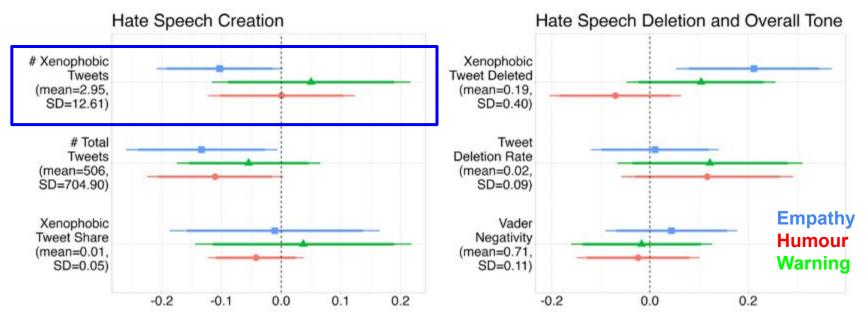
Figure 5: **Impressions of hate and counter speech.** Impact of hate and counter speech messages over time as quantified by the average number of likes and length of conversation they initiate. The emergence of organized counter speech (RI, blue vertical line). Results are for 181,370 reply trees from January 2015 to December 2018. Each data point is a week average and trends are smoothed over a month-long window. The timeline on the x-axis is the same as in other figures but was omitted for space, except for markers of the emergence of RG and RI.

Affiliation - Control accounts ("bots") to sanction the harassers. The author found that subjects who were countered by a **high-follower white male** significantly **reduced** their use of a racist slur.

Tweetment Effects on the Tweeted: Experimentally Reducing Racist Harassment <u>Munger 2016</u>

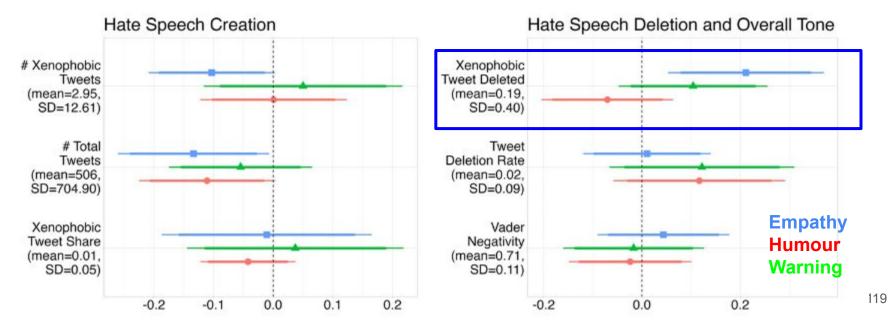
• The authors compared different types of counter speech - Warning of consequences, Humour and Empathy [Hangartnera,2021]

Empathy based counter speech increase the **retrospective deletion of xenophobic hate speech**(0.2 SD) and reduce the prospective creation of xenophobic hate speech over a 4-wk follow-up period by 0.1 SD. [Hangartnera, 2021]



118

Empathy based counter speech increase the retrospective deletion of xenophobic hate speech(0.2 SD) and reduce the **prospective creation of xenophobic hate speech** over a 4-wk follow-up period by 0.1 SD [<u>Hangartnera,2021</u>].



Potential extensions

• Hope Speech and Help Speech [<u>Palakodety 2019</u>] (YouTube Comments)

SWOT

- Definitions and related concepts
- Analysis of hate speech
 - Prevalence
 - Effect
- Detection of hate speech
 - Datasets
 - Traditional methods
 - Sequential models
 - Transformer based models
 - Challenges
- Mitigation of hate speech
 - Campaigns
 - Counterspeech detection
 - Counterspeech generation
 - Effect of counter speech
- SWOT analysis

- Advancement in NLP i.e. Transformers
- Multilinguality
- NGO Initiatives
- Multiple datasets
- Theme, Research grants etc.

Weakness

Opportunity

Weakness

- Inconsistent annotations
- Diverse tasks
- Lack of generalisability
- Bias in data as well as in models
- Lack of explainability

Opportunity

Weakness

Opportunity

- Multimodal datasets
- User as an important aspect
- New variants coming up -<u>Fearspeech</u>, <u>Dangerous</u> <u>speech</u>
- Counter speech as mitigation

Weakness

Opportunity

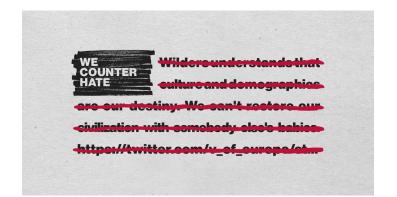
Threat

- Users vs detection
- Alternative (echo chamber) platforms - Gab
- Govt agencies weaponizing hate
- Laws used to silence dissent

Campaigns to deter hate

FACEBOOK

Counterspeech.fb



<u>ADL</u>

WeCounterHate

NoHateSpeechMovement

Resources

- <u>Notion page</u> containing hate speech papers.
- <u>Demo codes</u> for using our open source models
- A dataset resource created and maintained by Leon Derczynski and Bertie Vidgen. Click the link <u>here</u>
- This resource collates all the resources and links used in this information hub, for both teachers and young people. Click the link <u>here</u>

Thank You

Contacts: https://hate-alert.github.io https://twitter.com/hate_alert

